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Molecular mechanisms of neuropathological changes
in Alzheimer’s disease: a review
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Ab s t r a c t

More than 100 years after description of Alzheimer’s disease (AD), two major pathological processes observed already
by Alois Alzheimer, remain as the main explanation of the pathogenesis of Alzheimer’s disease. Important molecular
interactions leading to AD neuropathology were described in amyloid cascade and in tau protein function. No clinical
trials with novel therapies based on amyloid cascade and tau protein hypotheses have been successful. The main aim
of recent research is focused on the question what is primary mechanism leading to the molecular development of
AD pathology. Promising explanation of triggering mechanism can be seen in vascular pathology that have direct influ-
ence on the development of pathological processes typical for Alzheimer disease. Novel insight into a number of cel-
lular signaling mechanisms, as well as mitochondrial function in Alzheimer disease could also bring explanations of
initial processes leading to the development of this pathology.
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Introduction

Alzheimer’s disease (AD) was described as “prese -
nile dementia” first in 1906 by German psychiatrist Alois
Alzheimer, colleague of Emil Kraepelin. In 1901, Alz hei -
mer observed a patient named Auguste D. with a pro-
gressive loss of cognitive functions (comprehen sion and
memory, unpredictable behaviour etc.). Au guste D. died
in April 1906. Alzheimer analysed her brain postmortem
using histological methods and wrote in the descrip-
tion “Numerous small miliary foci are found in the supe-
rior layers. They are determined by storage of peculiar

material in the cortex” [39]. Alzheimer continued: “all
in all we have to face a peculiar disease process. Such
peculiar disease processes have been verified recently
in considerable numbers”. “Miliar foci, which are caus -
ed by deposition of a peculiar substance in the cortex”
are recognised today as senile plaques and “very pecu-
liar changes in the neurofibrils” are recognised today
as helical tangles. Emil Kraepelin introduced the epo -
nym “Alzheimer’s disease” for “presenile dementia”
[39]. More than 100 years after describing of Alzheimer’s
disease, two major pathological processes (amyloid beta
and tau protein deposition) observed already by Alois
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Alzheimer remain the main explanation of pathogenesis
of Alzheimer’s disease even though some other very
important molecular, genetic and epidemiological
hypotheses were expressed [53]. The main problem 
of the explanation of pathophysiology of Alzheimer’s
disease still could be seen in the inability to identi -
fy key mechanisms that release pathologies observed
in AD. 

Amyloid cascade hypothesis

The human amyloid precursor protein (APP) was
first identified in 1987 by several laboratories [20,64,57].
The APP gene was then mapped to chromosome 21 [58].
It has been determined that the APP gene contains 19
exons and spans more than 170 kb [74]. APP has seve -
ral isoforms generated by alternative splicing of exons
1-13, 13a, and 14-18. The predominant transcripts are
APP695 (exons 1-6, 9-18, not 13a), APP751 (exons 1-7,
9-18, not 13a), and APP770 (exons 1-18, not 13a). 

Amyloid precursor protein is type I transmembrane
protein. Amyloid precursor protein is synthesized in the
endoplasmic reticulum and then transported through
the Golgi apparatus to the trans-Golgi network (TGN)
where it is stored to its higher concentration at stea -
dy state [66]. 

Over 32 different APP missense mutations have
been identified in 85 families [6]. Mutations within APP
account for 10% to 15% of early-onset familial AD. Most
cases containing APP mutations have an age of onset
in the mid-40s and 50s [23]. It was observed that pa -
tients with Down syndrome (trisomy 21) develop amy-
loid deposits. Amyloid deposits cause the neuro patho -
logical features of AD patients when they are in their
40s. Three morphological subtypes of amyloid deposit
are observed in the brain of AD patients: a) diffuse
deposits, in which Aβ peptide is not aggregated into
the amyloid, b) primitive deposits, in which the Aβ pep-
tide is aggregated into the amyloid and associated with
dystrophic neuritis and helical filaments, and c) clas-
sic deposit, in which Aβ is highly aggregated to form
a central amyloid “core” surrounded by a “ring” of dys-
tro phic neuritis [3]. Armstrong [3] found a larger aver-
 age cluster size of the diffuse deposit in patients with
a familial form of Alzheimer’s disease in comparison
with patients with sporadic Alzheimer’s disease. Pre-
sented evidence suggests that postmenopausal oestro-
gen replacement therapy may prevent or delay the
onset of AD [67]. It has been determined that the ben-
eficial effect of oestrogen is mediated by accelerated

trafficking of beta APP through the trans-Golgi network
(TGN), which precludes maximal beta-amyloid produc -
tion [21]. 

Amyloid precursor protein can be processed at dif-
ferent cleavage sites by different proteases to few pe -
ptides with biological functions. Amyloid precursor 
pro tein undergoes posttranslational proteolytic pro-
cessing by α-, β-, and γ-secretases. α-secretase gen-
erates soluble amyloid protein, while β- and γ-secre-
tases gene rate APP components with amyloidogenic
features.

αα-secretase
Amyloid precursor protein processing by α-secre-

tase precludes the production of small peptides called
β-amyloid. Amyloid precursor protein is delivered to the
plasma membrane by the cytoskeletal system where
it is subjected to proteolytic processing by α-secretase.
A soluble molecule named sAPPα is released after this
cleavage. sAPPα has an important role in neuronal plas-
ticity/survival and it is protective against excitotoxic-
ity. sAPPα also regulates neural stem cell proliferation
and is important for early CNS development [48].

α-secretase is a zinc metalloproteinase that is also
type-I transmembrane protein. The family of proteins
with α-secretase activity includes ADAM9, ADAM10 
and ADAM17. Constitutive α-secretase is ADAM10 [33].
Disruption of ADAM10 activity has been shown to
decrease the level of soluble non-amyloidogenic APP,
suggesting that maintaining ADAM10 activity may play
a protective role in Alzheimer’s disease for processing
of APP via the α-secretase pathway. Biologically impor-
tant substrates of ADAM10 include the epidermal
growth factor (EGF), betacellulin, Notch, and amyloid
precursor protein (APP) [40]. Two potentially pathogenic
mutations with incomplete penetrance for late-onset
familial AD in the ADAM10 gene were described and
it has been found that ADAM10 has α-secretase activ-
ity that mediates the effect of cholesterol (influence
of apolipoprotein E) on APP metabolism [30,32]. Treat-
ment of various peripheral and neural human cell lines
with either a cholesterol-extracting agent or an HMG-
CoA reductase (HMGCR) inhibitor resulted in a dras-
tic increase of secreted alpha-secretase-cleaved soluble
APP peptides. It has been demonstrated that choles-
terol reduction promotes the non-amyloidogenic
alpha-secretase pathway and the formation of neu-
roprotective alpha-secretase cleaved soluble APP by sev-
eral mechanisms [32].
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ββ-secretase 
Absence of the α-secretase cleavage leads to APP

molecules internalization into endocytic compart-
ments where they are subjected to cleavage by β- and
γ-secretases to generate Aβ. Amyloid precursor protein
β-secretase 1 (BACE1) was identified and described
[70,73]. β-secretase 1 is β-secretase involved in APP
metabolism. β-secretase 1 is a membrane-bound as -
partyl protease with a characteristic type I transmem -
brane domain near C-terminus. The BACE gene is lo -
cated on chromosome 11 and consists of nine exons
coding for a protein of 501 amino acids [64]. β-secre-
tase 1 pre-mRNA can undergo alternative splicing in
exons 3 and 4, which results in the production of four
alternative variants with 501, 476, 457, and 432 amino
acids. The shorter splice variants have little cleavage
activity on APP substrate compared to the 501 amino
acid protein [41]. Precursor of BACE1, named pro-BACE1
is modified by glycosylation, phosphorylation and then
cleaved by a furin-like endoprotease to produce ma -
ture BACE1. After synthesis in the endoplasmic retic-
ulum, BACE1 is transported through the secretory route
to the plasma membrane from where it is re-interna -
lized into endosomal compartments [55]. β-secretase 1
requires acidic environment for optimal activity. This
optimal environment is provided by endosomes. 

β-secretase expression increases with age [18], and
is particularly elevated in the brain cortex of AD patients
[24]. Several mechanisms have been proposed to ex -
plain this increase [26]. A defect in BACE trafficking due
to caspase degradation of the GGA that controls BACE
intracellular sorting, or a loss of control of BACE mRNA
translation have been proposed as mechanisms to ex -
plain age-dependent increase of BACE expression.
Oxidative stress and other conditions such as hypox-
ia, ischaemia, and energy deprivation have also been
found to elevate BACE expression in cellular models
[22]. β-secretase 1 is still recognised as the drug tar-
get for the treatment of Alzheimer’s disease even
though many important proteins are additional BACE1
substrates, e.g. low/density lipoprotein receptor/relat-
ed protein, P/selectin glycoprotein ligand/1, neuregulin
(Nrg1-type III β1, and Nrg3) and the β2 subunit of volt-
age-gated sodium channel (Nav1, β2), some of which
play an important role in the development and normal
function of the brain [16]. β-secretase 2 (BACE2) is ano -
ther β-secretase that cleaves APP near the α-secretase
site more efficiently than BACE1 and this suggest that
BACE1 is primary β-secretase.

After APP cleavage by BACE1, ectodomain of APP
is released as a soluble peptide named sAPPβ. Region
1-16 of carboxyl-terminus that lacks sAPPβ is the dif-
ference between sAPPα and sAPPβ. The role of both
peptides is dramatically different. sAPPβ has a func-
tion as ligand of death receptor 6, mediates axonal
pruning and neuronal cell death [46]. 

After α- and β-cleavage, the carboxyl terminal frag-
ments (CTFs) of APP described as αCFT and βCFT
remain membrane-associated and will be further
cleaved by γ-secretase. Overproduction of βCFT has
a cytotoxic effect and causes neuronal degeneration.
It could be also done by cytotoxic peptides C31 and
Jcasp that arise from cleavage of βCFT by γ-secretase
or by caspase, including APP intracellular domain [49]. 

γγ-secretase
αCFT is processed by γ-secretase to p83 peptide that

is rapidly degraded and its function was not described.
βCFT is cleaved by γ-secretase to Aβ40 and Aβ42. Re -
cently, other sites cleavage by γ-secretase have been
described – ζ-site (Aβ46) and ε-site (Aβ49). αCFT is then
processed sequentially in ε-site, ζ-site and finally in 
γ-site [75].

γ-secretase is a big complex composed from a few
components, mainly from four proteins: presenilin (PS,
PS1 or PS2), nicastrin, anterior pharynx-defective-1 
(APH-1) and presenilin enhancer-2 (PEN-2). γ-secretase
complex is located in endoplasmic reticulum, Golgi com-
plex and trans-Golgi network, endocytic and inter-
mediate compartments [61].

In human, two homologues of presenilin were des -
cribed – presenilin 1 and presenilin 2. Mutations in PS1
(and also PS2) were described in the familial form 
of AD. More than 1000 point mutations in the prese-
nilins are responsible for most of the familial forms of
AD [47]. 

Amyloid precursor protein trafficking 

Amyloid precursor protein is biosynthesized in endo-
plasmic reticulum and anterogradely transported to the
Golgi apparatus and then to the trans-Golgi network
in distinct transport vesicles by conventional kinesin.
In the trans-Golgi network APP undergoes various post-
translational modifications (phosphorylations, tyrosi -
ne sulfations and N- and O-glycosylations). Recently, 
calsyntenin-1 has been shown to be co-transported with
APP along axons [69]. Calsyntenin-1 brain cellular lev-
el is reduced in persons with Alzheimer’s disease and
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the extent of calsyntenin-1 reduction correlates with
increased Aβ levels. GTPase activity of Rab3, a small
G-protein of the Rab family that is involved in the late
steps of exocytosis, is required for APP transport vesi-
cles [65].

After insertion of APP at the plasma membrane it
undergoes rapid clathrin-mediated endocytosis. C-ter-
minal of APP with four amino acid sequence, YENPY,
is the major signal for clathrin-mediated APP endo-
cytosis [50]. Many intracellular adaptors bind to this
C-terminal part of APP, for example Fe65, Mint proteins,
Dab1 or JIP [11]. Lipoprotein receptor-related protein
(LRP1) and apolipoprotein E receptor 2 are able to inter-
act directly with APP. Depending on the linker protein
involved, apolipoprotein E receptor 2 and APP are con-
nected intracellularly via Dab1 (disabled family mem-
ber), Mint1 or Fe65 adaptors or extracellularly by 
F-spondin [11]. There are alternative ways of APP after
internalization. Amyloid precursor protein can be
transported rapidly and directly from the cell surface
to lysosomes [36]. Amyloid precursor protein can be
also degraded in proteasome [9]. Amyloid precursor pro-
tein can be transported from endosomes to Golgi appa-
ratus and/or TGN from where it could be distributed
back to plasma membrane. 

Aββ function

It has been shown that the extracellular domain of
APP is especially important for promoting synapse 
formation. Trans-synaptic interactions between pre- 
and postsynaptic APP contribute to the adhesion of
synapses [72]. It was found that APP knock-out and 
also BACE1 knock-out mice show impaired memory [31].
It suggests a necessary role of Aβ in learning and mem-
ory. Recently, it was found that a low level of Aβ increas-
es hippocampal long-term potentiation and enhances
memory, indicating a novel positive, modulatory role
on neurotransmission and memory [54]. Picomolar Aβ
is present in both the cerebrospinal fluid and plasma
of healthy individuals throughout life. It has been shown
that picomolar concentrations of both Aβ 42 monomers
and oligomers cause a marked increase in long-term
potentiation, whereas high nanomolar concentrations
lead to the well-established reduction of potentiation
in the hippocampus [54]. 

There are two main toxic species of Aβ – Aβ40 and
Aβ42. The increase in the ratio of Aβ42/Aβ40 is typi-
cal of AD patients [62]. Majority of Aβ peptides is secret-
ed from the neurons as Aβ40. A smaller fraction of Aβ42

is cleaved to produce Aβ42 that is the main amyloid
peptide that is responsible for the production of
amyloid fibrils in AD patients. Aβ42 self-associates to
dimmers, soluble oligomers and to insoluble aggregates
of fibrils. Extracellular Aβ can be internalized by cells
for intracellular degradation, e.g. by insulin-degrading
enzyme and neprilysin. Presented data imply a mech-
anism for the formation of Aβ amyloid plaques in which
initially soluble and extracellular Aβ peptide becomes
internalized and sorted into multivesicular bodies [17].
Upon spontaneous nucleation or in the presence of suit-
able fibril seeds, fibrils grow out, disturb the ordered
multivesicular bodies function and penetrate the ve -
sicular membrane. Ultimately cells die and all intra-
cellular structures, including all intracellular amyloid
species, become released into the extracellular space
[17]. The cytotoxic effect of Aβ could be achieved also
by the above described C31 and Jcasp peptides re leased
during βCFT cleavage.

There have been more than 30 investigations as -
sessing plasma amyloid beta Aβ40 and Aβ42 as a dia-
gnostic or as a biological risk factor. Aβ42 and Aβ42/
Aβ40 ratio levels were elevated in unaffected familial
AD mutation carriers compared with unaffected indi-
viduals with familial AD without mutations [56]. How-
ever, Aβ42 levels were lower in mutation carriers with
incipient AD characterized as having a clinical demen-
tia rating (CDR) = 0.5 [25], supporting the hypothesis
that Aβ42 decreases prior to overt disease. 

Recently, the transfer of Aβ between neurons has
been described. This transfer is dependent on the sy -
naptic connection between neurons [44]. Previously,
the degeneration of entorhinal cortex in the initial stage
of AD and subsequent degeneration of connected areas
was described. The exogenous intracerebral injection
of Aβ aggregates taken from brain extracts of AD pa -
tients induced cerebral amyloidogenesis that progresses
from the injection site in APP transgenic mice. Newly
described transfer of Aβ between neurons could ex -
plain spreading the neurodegenerative pathology to
anatomically connected brain areas [44].

Tau protein (microtubule-associated 
protein tau, MAPT)

The human gene for tau protein (MAPT gene) is lo -
cated on chromosome 17 [45]. It contains 15 exons.
Exons 2, 3 and 10 are alternatively spliced resulting in
six isoforms. There are 79 potential serine and thre-
onine phosphate acceptor residues in the longest iso-
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form of tau. Tau has more than 30 phosphorylated sites.
Normal tau protein stabilizes microtubules in the cyto -
skeleton of neurons, promote neurite outgrowth, mem-
brane interactions, facilitate enzyme anchoring and facil-
itate axonal transport of organelles to nerve terminals
[27]. The phosphorylation of tau protein regulates micro-
tubule binding and assembly [71]. It has been demon-
strated that in solution normal tau associated with the
hyperphosphorylated tau protein to form large tangles
of filaments [1]. In AD, tau protein is hyperphospho-
rylated then it accumulates in neurons and forms paired
helical filaments. Tau protein loses its capability to bind
with microtubules and it leads to neurodegeneration.
Astrocytes are essential for the Aβ-induced tau phos-
phorylation observed in primary neurons [19].

Causal factors affecting phosphorylation of tau are
not fully understood but according to observation, mul-
tiple factors in this process are expected.

Abnormal binding of hyperphosphorylated tau pro-
tein on microtubules typical of AD patients causes insta-
bility of microtubules and lead to abnormal axonal
transport that is dependent on microtubules. Aβ and
mitochondria are transported along microtubules by
molecular motors. Inhibition of axonal transport leads
to accumulation of APP in cell body. It was found that
impaired axonal transport of organelles including mito-
chondria causes oxidative stress [38].

In the tau gene no mutation related to AD was found.
There was reported the association between the H1c
subhaplotype of the MAPT gene and the risk of Alz hei -
mer’s disease in 360 autopsy-confirmed cases with ages
at death over 65 years of age and 252 controls [42].

It was demonstrated that the MAPT gene rs242557
polymorphism that is part of the H1c subhaplotype, re -
sults in increased MAPT gene expression [34]. The au -
thors also provided evidence that the H1/H2 MAPT hap-
lotype interacts with functional SNPs in the GSK3B gene
to affect the risk of Alzheimer’s disease.

The relationship between tau protein and mito-
chondria was recently described. Tau protein was found
on mitochondrial membranes. It is increasingly accept-
ed that the trafficking to, and density of, mitochondria
at subcellular locations with the energy and Ca2+-buffer-
ing requirements, including synapses, is important for
correct neuronal function [37]. The distribution of mito-
chondria in axons and dendrites correlates closely with
the predicted energy usage of these compartments.
Mitochondria undergo rapid trafficking in axons and
dendrites. Synaptic activity modulates mitochondrial

motility and morphology and controls mitochondrial
distribution in dendrites and their recruitment to the
base of dendritic spines [35]. In the experiment con-
ducted on neurons transfected with tau protein, mito-
 chondria disappeared from the neurites and became
concentrated in the cell body [63]. Preferential inhibi-
tion of plus-end-directed transport (outside the cell cen-
tre) of mitochondria and other organelles by kinesin
molecular motors was observed as a result of tau 
protein level elevation. Minus-end-directed transport
(inside the cell centre) by a dynein-like motor then
becomes dominant [63].

Apolipoprotein E 

Apolipoprotein E is a cholesterol transport protein.
It can be found mainly as a component of lipoprotein
complexes along with other apolipoproteins and pro-
teins in plasma and CSF. Three alleles (ε2 – Cys112/
Cys158, ε3 – Cys112/Arg158 and ε4 – Arg112/Arg158)
were described in humans, according to combinations
in two polymorphic sites. Amino acid differences at
these positions are crucial as they alter the charge and
structural properties of the protein. 

The ApoE gene has been associated with both famil-
ial late-onset and sporadic late-onset AD in numerous
studies. To date only ApoE4 has been firmly identified
as a genetic risk factor, although segregation analyses
conducted in families of patients with LOAD support
the presence of additional genetic variants [13]. With
a population attributable risk that is estimated at 20-
50%, the ApoE4 allele increases the risk of cognitive
impairment, LOAD, and age-of onset of cognitive impair-
ment in a dose-dependent fashion: 1 ε4 allele is asso-
ciated with a 2- to 3-fold increased risk, having 2 copies
is associated with a 5- to 10-fold increase. Similar effect
sizes have been observed for progression of cognitive
impairment to dementia. Individuals carrying ApoE4
allele have higher total and LDL cholesterol [60]. 

High cholesterol levels have been linked to over-
production of Aβ. One of the physiological functions
of Aβ has been suggested to control cholesterol trans-
port. Individuals of 50 years and older who were 
prescribed statins had a substantially lowered risk of
developing dementia, independent of the presence or
absence of untreated hyperlipidaemia, or exposure to
non-statin LLAs [28]. Cholesterol greatly reduced the
levels of sAPPα. ADAM10 is unable to cleave APP in
a cholesterol-rich environment [32]. Changes in cellular
cholesterol levels in Alzheimer’s disease could contribute



Folia Neuropathologica 2013; 51/16

Omar Šerý, Jana Povová, Ivan Míšek, Lukáš Pešák, Vladimír Janout

to neuronal degeneration by decreasing the produc-
tion of sAPPα [7]. 

Possible mechanisms triggering
Alzheimer’s disease pathology

Vascular and mitochondrial hypotheses of patho-
genesis of AD were also stated. Several vascular risk
factors e.g. diabetes mellitus, hypertension, athero-
sclerosis, hypercholesterolemia, metabolic syndrome
and obesity, have been found to be associated with
Alzheimer’s disease [51,52]. The apolipoprotein E ge -
notype with the link to dynamics of cholesterol trans-
port is also implicated as a vascular risk factor in influ-
encing AD [29]. AD patients often exhibit various
cerebrovascular pathologies including cerebral micro -
bleeding [14,15,43] and cerebral microinfarcts. Microin-
farcts are common in patients with vascular demen-
tia (weighted average 62%), Alzheimer’s disease (43%),
and demented patients with both Alzheimer-type and
cerebrovascular pathology (33%) compared with non-
demented older individuals (24%) [8]. Cerebral hypop-
erfusion may initiate and/or accelerate the neurode-
generation cascade causing amyloid deposition,
synaptic and neural dysfunction and lead to cognitive
impairment [29,51,52]. Aβ deposition into the capillary
wall is strongly associated with the ApoE4 allele as a risk
factor [4]. Oxidative stress that can be influenced by
hypoxia and also by mitochondrial dysfunction is asso-
ciated with AD pathogenesis.

Mitochondrial dysfunction relationship with AD
could be explained by abnormalities in mitochondrial
metabolism, biogenesis, axonal transport, fusion and
fission processes and by autophagy [10,12]. Function-
al mitochondria are supplied to the synaptic terminals
by anterograde transport by microtubule associated
protein kinesin and dysfunctional mitochondria are
transported back to cell soma by dynein [59]. Tau pro-
tein has been implicated in abnormal mitochondrial
trafficking when hyperphosphorylation of Tau protein
negatively affects the transport of mitochondria to
synapses and back. The lack of ATP energy in synap-
tic terminals affects synaptic function and it leads to
synaptic damage. The accumulation of transmembrane
arrested APP block protein translocation, disrupts mito-
chondrial function, and impair brain energy metabo-
lism [5]. It has been shown that the interaction
between Aβ and NH2-tau fragment inhibit the mito-
chondrial adenine nucleotide translocator-1 (ANT-1) [2].
ANT-1 has a function in export of mitochondrial ade -

nosine triphosphate into the cytosol and has a role in
the regulation of the intrinsic apoptosis pathway.

Conclusions

Alzheimer’s disease (AD) is the most common cause
of dementia, affecting more than 10% of people over
the age of 65. Although considerable progress in the
understanding of the molecular mechanisms of the
pathogenesis of AD has been made, many aspects,
especially key mechanisms that release pathologies,
remain controversial. Promising research is focused on
the research of hypoxia and oxidative stress caused
by different mechanisms, e.g. by vascular and mito-
chondrial pathologies. Aβ deposition in different cell
compartments and in extracellular areas and its
pathophysiological role remains to be explained in rela-
tionship to other molecular mechanisms. It could be
concluded that up to date we know many mechanisms
that could affect set up and progress of AD patho-
genesis. It seems like AD is not only one or two types
of diseases but it could be a group of diseases with sim-
ilar APP and Tau pathologies that are triggered by dif-
ferent mechanisms. Genetic disposition to AD would
play an important role in the mechanisms of Alz -
heimer’s disease initiations. Thus, we could expect
a group of diseases specified as Alzheimer’s disease
when the interplay of environmental and genetic fac-
tors would be responsible for the type of initiation of
AD pathogenesis. 
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